Acta Crystallographica Section E

Structure Reports

Online

4-(N,N-Di-p-tolylamino)benzaldehyde N^{\prime}, N^{\prime}-diphenylhydrazone

ISSN 1600-5368

Li-Li He, Xiang-Gao Li,* De-Shun Xu and Shi-Rong Wang

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
hollymmnn@hotmail.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.126$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NNPh}_{2}$ or $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3}$, was synthesized by the reaction of 4-(di-p-tolylamino)benzaldehyde and 1,1-diphenylhydrazine. The molecule is the trans isomer with respect to the hydrazone double bond. The central $\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{N}-\mathrm{N}$ fragment is planar within $0.11 \AA$. The planes of the p-tolyl rings and one of the hydrazone phenyl rings form substantial dihedral angles ($>60^{\circ}$) with the central plane of the molecule, whereas the second hydrazone phenyl ring is much closer to the central plane, the dihedral angle being 21.7 (3) ${ }^{\circ}$.

Comment

Hole-transporting materials (HTMs) play an important role in the manufacture of organic photoconductors (He et al., 2005) and organic light-emitting diodes (Li et al., 2005; Satoh et al., 2003). It has been shown (Murayama, 1999) that aromatic hydrazones, usually readily available via the reaction of a substituted aromatic aldehyde with 1,1-diphenylhydrazine, may, in many cases, be used as high-quality HTMs.

(I)

In this paper, the structure of the title compound, (I), which exhibits HTM properties, is reported. The compound was synthesized by the reaction of 4-(di- p-tolylamino)benzaldehyde and 1,1-diphenylhydrazine, obtained by reduction of N, N-diphenylnitrous amide.

The title compound, (I) (Fig. 1), is the trans isomer with respect to the hydrazone double bond $\mathrm{C} 21=\mathrm{N} 2$. Atoms N 1 , C15-C21, N2 and N3 of the central fragment of the molecule are coplanar within $0.11 \AA$. The planes of the p-tolyl rings ($\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 8-\mathrm{C} 13$) and one of the hydrazone phenyl rings (C22-C27) form substantial dihedral angles with the central plane of the molecule $\left[75.6(2), 66.4(4)\right.$ and $78.2(3)^{\circ}$, respectively], whereas the second hydrazone phenyl ring (C28-C33) remains much closer to the central plane [dihedral angle $\left.=21.7(3)^{\circ}\right]$. This conformational peculiarity is the result of steric constraints for the ortho- H atoms which limit the

Received 21 December 2005
Accepted 17 January 2006
range of energetically acceptable conformations of phenyl rings $\mathrm{C} 1-\mathrm{C} 6, \mathrm{C} 8-\mathrm{C} 13$ and $\mathrm{C} 22-\mathrm{C} 27$.

Experimental

N, N-Diphenylnitrous amide $(6.0 \mathrm{~g}, 0.03 \mathrm{~mol})$ and $\mathrm{Zn}(6.5 \mathrm{~g}, 0.10 \mathrm{~mol})$ were mixed in ethanol $(30 \mathrm{ml})$; thereafter acetic acid $(9.3 \mathrm{ml}$, 0.16 mol) was added dropwise at 293 K . The reaction mixture was stirred for 3 h , while cooling with ice to keep the temperature below 298 K . The reaction mixture was then filtered and the filtrate, which contained 1,1-diphenylhydrazine, was refluxed for 4 h with 4 -(di-ptolylamino)benzaldehyde $(7.6 \mathrm{~g}, 0.025 \mathrm{~mol})$. The reaction mixture was cooled to room temperature and filtered. The crude product was recrystallized from ethyl acetate and the title compound was isolated in the form of yellow crystals (yield: 94.1%, m.p. 437 K).

Crystal data

$\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3}$
$M_{r}=467.59$
Monoclinic, $P 2_{1} / n$
$a=12.875(3) \AA$
$b=15.037(3) \AA$
$c=13.591(3) \AA$
$\beta=95.107(4)^{\circ}$
$V=2620.6(10) \AA^{3}$
$Z=4$
$D_{x}=1.185 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=467.59$
Monoclinic, $P 2_{1} / n$
$a=12.875$ (3) A
$b=15.037$ (3) \AA
$c=13.591$ (3) A
$\beta=95.107$ (4) ${ }^{\circ}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 2276 reflections
$\theta=2.3-22.8^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.22 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-	5382 independent reflections
\quad detector diffractometer	2534 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.051$
Absorption correction: multi-scan	$\theta_{\max }=26.5^{\circ}$
$\quad(S A D A B S ;$ Bruker, 1997)	$h=-14 \rightarrow 16$
$T_{\min }=0.985, T_{\max }=0.989$	$k=-18 \rightarrow 10$
14697 measured reflections	$l=-17 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.126$
$S=1.02$
5382 reflections
327 parameters
H -atom parameters constrained
The H atoms were positioned geometrically and refined in the riding-model approximation $\left[\mathrm{C}-\mathrm{H}=0.93-0.96 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ (for methyl H atoms)].

Figure 1
The molecular structure of (I), showing the atom labelling, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small circles of arbitrary radii.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was financed by the National High-Technology Research and Development Program of China (grant No. 2002 A A325050).

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
He, L.-L., Li, X.-G. \& Wu, A.-S. (2005). Chin. J. Appl. Chem. 22, 946-949.
Li, J. Y., Li, Y. Q., Lee, C. S., Kwong, H. L. \& Lee, S. (2005). Chem. Mater. 17, 1208-1212.
Murayama, T. (1999). J. Synth. Org. Chem Jpn, 57, 541-551.
Satoh, N., Cho, J. S., Higuchi, M. \& Yamamoto, K. (2003). J. Am. Chem. Soc. 125, 8104-8105.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

